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By a means of a method based on the reductive perturbation method, we show that the amplitude of waves
on the nonlinear electrical transmission lines �NLTLs� is described by the cubic-quintic complex Ginzburg-
Landau �CGL� equation. Then, we revisit analytically and numerically the processes of modulational instability
�MI�. The evolution of dissipative modulated waves through the network is also examined, and we show that
solitonlike excitations can be induced by MI. Analytical results, illustrating the nature of MI of plane-wave
solution, are also found to be in good agreement with numerical findings.
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Solitonlike localized states arise in dissipative systems
driven far from thermal equilibrium such as hydrodynamics
�1�, granular media �2�, Bose-Einstein condensates �3�, non-
linear optics �4�, and nonlinear electrical transmission line
�5�, to cite a few. These structures are referred to as “dissi-
pative solitons” and are sustained because of an interplay
between dispersion, nonlinearity, gain, and losses. The term
“dissipative,” in its present meaning, was introduced in the
work of Nicolis and Prigogine �6� to describe systems which
have losses as well as a pump source. One of the models of
a dissipative system is based on the complex Ginzburg-
Landau �CGL� equation �7,8� that has terms responsible for a
variety of gain-loss mechanisms. This equation also de-
scribes self-phase modulation, as well as diffraction which
manifests itself as a discriminator for various angular com-
ponents of wave. One of its experimental realizations is spa-
tial dissipative solitons in semiconductors �9�.

Nonlinear electrical transmission lines �NLTLs� are very
convenient tools for studying wave propagation in nonlinear
dispersive media �5,10�. The nonlinear propagation of sig-
nals in NLTLs has been investigated theoretically and nu-
merically by many authors �11�. It has been shown that the
system of equations governing the physics of this network
can be reduced to a cubic nonlinear Schrödinger �NLS� equa-
tion or a pair of coupled nonlinear Schrödinger �CNLS�
equations, the Korteweg–de Vries equation, and the CGL
equation. Modulational instability �MI� is the outcome of the
interplay between nonlinearity and dispersive or diffraction
effects. It is a symmetry-breaking instability so that a small
perturbation on top of a constant-amplitude background ex-
periences exponential growth, and this leads to beam
breakup in either space or time.

In this Brief Report, we analyze the dynamics of waves in
a nonlinear electrical line with driving and dissipation. We
focus on the derivation of the cubic-quintic �CQ� complex
Ginzburg-Landau �CQCGL� equation from the discrete equa-
tion, and study the propagation of modulated waves as well

as effects of dissipative elements induced by MI.
We consider a nonlinear network of N cells as illustrated

in Fig. 1. Each cell contains a linear inductance L1 in the
series branch and a linear inductance L2 in parallel with a
nonlinear capacitance C�V� in the shunt branch. This capaci-
tance consists of a reverse-biased diode with a differential
capacitance function of the voltage Vn across the nth capaci-
tor. In order to take into account the dissipation through the
network, the conductances g1 and g2 are connected in paral-
lel with L1 and L2, respectively. The conductance g1 de-
scribes the dissipation in the inductance L1, while g2 ac-
counts for the dissipation of the inductance L2 in addition to
the loss of the nonlinear capacitance CV. The nonlinearity is
introduced in the line by a Varicap diode for which the ca-
pacitance varies with the applied tension. Its capacitance
C�Vn�=C0�1−�Vn+�Vn

2� depends nonlinearly on the voltage
Vn of the nth cell, with positive parameters C0, �, and �.
From Kirchhoff’s laws it is easy to show that the propagation
of waves in the network is governed by the following equa-
tion:

d2Vn

dt2 − �
d2Vn

2

dt2 = �0
2�Vn−1 − 2Vn + Vn+1�

+ 2�0�1�d�Vn−1 − 2Vn + Vn+1�
dt

�
− �0

2Vn − 2�0�2
dVn

dt
, �1�

with n=1,2 , . . . ,N, where N is the number of cells con-
sidered. Coefficients �0=1 / �L1C0�1/2 and �0=1 / �L2C0�1/2

are characteristic frequencies of the network. For the sake
of convenience, the dimensionless �1 and �2 are intro-
duced, and they are related to conductances g1 and g2 as
g1

C0
=2�0�1 and

g2

C0
=2�0�2. We use the semidiscrete approxi-
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FIG. 1. One unit cell of the discrete nonlinear electrical trans-
mission line.
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mation to obtain the short-wavelength envelope soliton. This
asymptotic approach allows us to describe the envelope in
the continuum approximation and to treat properly the carrier
wave with its discrete character. Owing to the assumed weak
nonlinearity, we expand Vn�t� into the following asymptotic
series �12�:

Vn�t� = � ��l/2Vl,m�n,t��e�im��n,t�� + c.c. �2�

Utilizing the idea developed by Taniuti and Yajima �13�, the
solution Vn�t� is taken to be

Vn�t� = �1/2V11�n,t�ei� + c.c. + ��V20 + V22�n,t�e2i� + c.c.�

+ �3/2V33�n,t�e3i� + c.c. + �2�V42�n,t�e2i�

+ V44�n,t�e4i� + c.c.� + �5/2�V53�n,t�e3i�

+ V55�n,t�e5i� + c.c.� + 0��7/2� , �3�

where � is the phase defined by �=kn−�t. The smallness
parameter � which ranks from 0 to 1 �0��	1� represents
the size of the amplitude of perturbation; c.c. stands for the
complex conjugate of the preceding expression. In the result-
ing equation, there are nonzero terms Vlm�n
1�, which are
expanded in the continuum approximation around Vlm�x , t�,
with n=x. So, the fast change in the phase � in Eq. �3� is
correctly taken into account by considering differences in the
phase for the discrete variable n. We have also scaled time
and space derivatives as �

�x �0��� and �
�t �0���, respectively,

and neglected consistently high order in � terms. Then, we
keep up to the second derivative terms of Vn�t� to balance
dispersion and nonlinearity. Substitution of Vn�t� and its de-
rivatives in Eq. �1� yields a series of equations with respect
to the power of �.

From equations of ��1/2 ,ei��, that is, the terms of 0���1/2

for the first harmonic, we obtain the linear dispersion relation

�2 = �0
2 + 4�0

2 sin2� k

2
� . �4�

From the equation of ��3 ,e0i��, we obtain the expression of
the group velocity Vg defined by

Vg =
��

�k
=

4�0
2 sin�k�

�
, �5�

which is represented in Fig. 2. At the order of ��3/2 ,ei��, we
have

− 2i�
�V11

�t
+ 4�0 sin�k��i�0 + ��1�

�V11

�x

= − 2��2��a1 + 2�20� + ia2�	V11	2V11, �6�

where �20=
2�Vg

2

Vg
2−�0

2 . Therefore at ��5/2 ,e3i��, we can write

V53 = �a31 + ia32�
��V11

3 �
�x

+ �a33 + ia34�V11
��V11

2 �
�x

+ �a35 + ia36�	V11	2V11
3 , �7�

where coefficients aj and aij are defined in the Appendix.
From the equation of ��5/2 ,ei�� and by going into the refer-
ence frame moving with the group velocity, the resulting
equation describing the dynamics of a wave packet has the
following form:

iV11,���� + P
�2V11

�
2 + Q1	V11	2V11 + Q2	V11	4V11 = 0, �8�

where 
=x−Vgt, �= t, and the subscripts � and 
 denote par-
tial differentiations with respect to � and 
. Coefficients P
= �Pr+ iPi� and Qj = �Qjr+ iQji� �with j=1,2� are expressed in
the Appendix. Pr is the dispersion coefficient; Pi describes
spectral filtering or parabolic gain. Q1r determines how the
frequency is amplitude modulated, while Q1i accounts for the
cubic nonlinear amplification. Q2r represents quintic nonlin-
earity and Q2i is the quintic damping.

The cubic CGL equation gives rise to exact solutions for
solitary pulses, but they are unstable. The most straightfor-
ward way to modify the equation so as to provide for the
existence of stable pulses is to introduce the CQ nonlinearity.
Equation �8� is the so-called CQCGL equation. The CQCGL
equation was originally proposed by Petviashvili and Sergee
�14�, and stable solitary pulses in this model were first pre-
dicted in Ref. �15�. Later, solutions of the CQCGL equation
were investigated in great detail �15�. Among other physical
applications of the CQCGL equation, one can also mention
binary fluid convection �16�, phase transition �17�, Taylor-
Couette flow between counter-rotating cylinders �18�, and
soliton fiber laser with nonlinear polarization-dependent
losses �which is equivalent to fast saturable absorption ac-
tion� �19�. In this case, the time-localized pulse is supported
by the nonlinear gain and loses energy. Thus, a stable sta-
tionary soliton state may be formed as a result of the balance
between nonlinear gain, spectral filtering, and the quintic sta-
bilizing term.

In order to study the MI, we consider a small perturbation
of the initial wave as

V11�
,�� = �1 + B�
,���An exp�i�kn
 − �n��� , �9�

where the perturbation B�
 ,�� is considered to be a combi-
nation of progressive and regressive waves, An is a complex
constant, kn and �n are the wave number and the angular
frequency of the carrier wave, respectively, and l and � are
the wave number and the angular frequency of the perturba-
tion, respectively. Following the standard procedure of linear
stability analysis presented in Ref. �20�, one can derive the
following MI criterion for the system understudy:
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FIG. 2. Representation of the group velocity as a function of the
wave number k.
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�PrQ1r + PiQ1i� + 2�PrQ2r + PiQ2i�	An	2 +
�

2l2	An	2
� 0, �10�

where
� = − 16Q2iQ1i	An	6 − 8Pil

2Q2i	An	4. �11�

Relation �10� represents the MI criterion associated to
CQCGL equation �8�. This result generalizes the well-known
Lange and Newell criterion for Stokes waves by the presence
of the additional term �

2l2	An	2 . Figure 3 depicts the right-hand
side of relation �10�. From this figure one can see that dis-
persion relation �10� is positive for wave number in the range
of 0�k�2.5.

In order to check the validity of the analytical predictions
on MI presented above, we have performed numerical simu-
lations on the general Eq. �1� governing wave propagation in
the NLTL. Parameters of the line are L1=0.640 mH, L2
=0.480 mH, and �=0.21 V−1, with �1=0.004 and �2
=0.001 �10,21�. The fourth-order Runge-Kutta scheme is
used with a normalized integration time step �t=5�10−3.
Similarly, the number of cells is chosen so that we do not
encounter the wave reflection at the end of the line. At the
input of the line, we apply a slowly modulated signal:

V�t� = V0�1 + m0 cos�2�fmt��cos�2�fpt� , �12�

where V0 is the amplitude of the unperturbed plane wave
�carrier wave�, m0 designates the modulation rate, and fm is
the frequency of modulation. As a specific example, we use
the following values: V0=1.5 V, fp=1180 kHz, m0=0.01,
and fm=16 kHz. Figure 4 shows an example of wave propa-
gating through the network in the absence of dissipation
terms ��1=�2=0�. As the time goes on and as the wave
travels along the electrical network, we observe the propaga-
tion of wave packet. The magnitude of wave decreases ex-
ponentially. If we take into account dissipation on the line
��1=0.004 and �2=0.001�, we observe in Fig. 5 that the
initial nonlinear excitation is well modulated. Waves propa-
gate through the electrical network; the continuous wave
breaks into a pulse train. The solitonic excitations of the
pulse train have envelope functions with a familiar shape of
the theory of solitonlike objects. Each element of the train
has the shape of a solitonlike object. But, in contrast to soli-
ton, they emerge as a solution of time-dependent classical
equation of motion. In fact, the typical occurrence of soliton-

like pulses �hereafter we call them soliton� produced by MI
along the evolution of waves is due to the interplay between
the nonlinearity and dispersion. The first experimental obser-
vation of MI was reported by Tai et al. �22� on the light
waves in dielectric material.

By comparing Figs. 4 and 5, one can note that the mag-
nitude of waves has drastically decreased due to the presence
of the dissipative terms in the line. Since the disintegration
on pulses train typically occurs in the same parameter region
where bright solitons are observed, MI is considered, to
some extent, a precursor to soliton formation. MI is then
responsible for the formation of envelope soliton in electrical
transmission lines. MI also sets a fundamental nonlinear lim-
iting factor in the transmission of dense wavelength-division
multiplexed signals in long-distance electrical links.

In summary, we have considered the discrete NLTL and
examined the dynamics of modulated waves. Through the
reductive perturbation method, it has been shown that the
propagation of modulated waves is governed by the CQCGL
equation. Based on this equation and exploiting the Stokes
wave analysis, the generalized Lange and Newell criterion
for MI has been derived. It has been found that when the line
is subjected to MI, the initial waves disintegrate into a train
of pulses. Excellent agreement between analytical and nu-
merical investigations of MI has been obtained.
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FIG. 3. Modulational instability criterion and regions of MI.
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FIG. 4. Disintegration of plane wave into solitonlike excitation
in the line in the absence of dissipative elements for cell 700.

FIG. 5. Disintegration of plane wave into solitonlike excitation
in the line in the presence of dissipation of dissipative elements for
cell 700.
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APPENDIX

The following are expressions of different coefficients ai
and aij:

a0 = �0
2 + 4�0

2 sin2�k� − 4�2,

a01 = − 4��0��2 + 4�1 sin2�k�� ,

a1 =
− 2�a0

a0
2 + a01

2 , a2 =
− 2�a01

a0
2 + a01

2 ,

a3 = �0
2 + 4�0

2 sin2� 3k
2 � − 9�2,

a4 = − 6��0��2 + 4�1 sin2� 3k
2 �� ,

a5 = −
6��a1a3 + a2a4�

a3
2 + a4

2 ,

a6 = −
6��a2a3 − a1a4�

a3
2 + a4

2 , a7 = a0, a8 = a01,

a12 = − 2��2a6, a13 =
�a7a9 + a8a10�

a7
2 + a8

2 ,

a9 = 2�0Vga1 − 8��0Vga1�1 sin�2k� + 2�0
2Vga2 sin�2k� ,

a14 =
�a7a10 − a8a9�

a7
2 + a8

2 , a11 = − 2��2a5,

a10 = 4���0Vg − 2�0
2Vga1�1 sin�2k� + 2�0Vg�2a2 sin�2k�

− 8��0Vga2�1 sin�2k�, a23 = a3,

a15 =
�a7a11 + a8a12�

a7
2 + a8

2 , a16 =
�a7a12 − a8a11�

a7
2 + a8

2 ,

a17 = �0
2 + 4�0

2 sin2�2k� − 16�2, a24 = a4,

a18 = − 8��0��2 + 4�1 sin2�2k�� ,

a19 = − 32��2a5 − 16��2�a2
2 − a3

2� ,

a20 = − 32��2�a6 − a2a3� ,

a21 =
�a17a19 + a18a20�

a17
2 + a18

2 , a22 =
�a17a20 − a18a19�

a17
2 + a18

2 ,

a25 = − Vg
a4

3
a5 − 6�Vg�a6 + 2a2� ,

a27 = − 6��2a13, a28 = − 6��2a14,

a26 = − 6�Vg�a5 − 2a1� − Vg
a4

3
a6, a29 = a5 + a15 + 2a21,

a30 = a6 + a16 + 2a22, a31 =
�a23a25 + a24a26�

a23
2 + a24

2 ,

a32 =
�a23a26 − a24a25�

a23
2 + a24

2 , a33 =
�a23a27 + a24a28�

a23
2 + a24

2 ,

a34 =
�a23a28 − a24a27�

a23
2 + a24

2 , a35 =
�a23a29 + a24a30�

a23
2 + a24

2 ,

a36 =
�a23a30 − a24a29�

a23
2 + a24

2 , P = �a45 + ia46�

Q1r = −

4�2�Vg
2

Vg
2−�0

2 + a1��

�
, Q1i = −

��a2

�
,

Q2r = − ���a5a1 + a6a2�, Q2i = − ���a6a1 − a5a2� .
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